Long-circulating vectors for the Systemic delivery of genes David B Fenske*¹, Ian MacLachlan² & Pieter R Cullis^{1,3}

Addresses

Department of Biochemistry and Molecular Biology University of British Columbia 2146 Health Sciences Mall Vancouver BC Canada Email: fenske@interchange.ubc.ca

Protiva Biotherapeutics

INEX Pharmaceuticals Corporation
100-8900 Glenlyon Parkway
Glenlyon Business Park
Burnaby
BC
C a n a d a

"To whom correspondence should be addressed

Current Opinion in Molecular Therapeutics (2001) 3(2):153-158 © PharmaPress Ltd ISSN 1464-8431

The development of vectors capable of freating systemic diseases is an important goal for gene therapy protocols. In order for a carrier system to preferentially accumulate at sites of systemic disease, such as tumors, sites of inflammation and sites of infection, the carrier must exhibit long circulation lifetimes following intravenous injection. Unfortunately, most gene delivery systems, including viral vectors as well as non-viral vectors, eg, lipoplexes, polyplexes and lipopolyplexes, are rapidly cleared from the circulation and are preferentially taken up by the 'first-pass' organs such as liver, lung and spleen. Here we 'review recent literature concerning the ability of non-viral vectors to act as systemic gene therapy agents. The most promising systemic vectors are liposomal systems in which plasmid DNA is encapsulated within a lipid bilayer. The stabilized plasmid-lipid particle (SPLP) system, for example, exhibits circulation half-lives of the order of 6 h following intravenous injection, and preferentially accumulates in distal tumors with gene expression primarily localized fo the tumor site.

Keywords Gene therapy, lipoplexes, lipopolyplexes, liposomes, polyplexes, stabilized plasmid-lipid particles, systemic drug delivery

Introduction

Gene therapy was initially seen as a treatment for inherited genetic disorders by replacement of defective genes with functioning copies. This perspective has changed as current efforts focus on the development of genetic drugs capable of treating acquired diseases such as cancer and inflammation. The systemic nature of these diseases requires the development of gene delivery vehicles capable of accessing distal disease sites following systemic (intravenous) administration. Unfortunately, while numerous methods exist for effective *in vitro* gene delivery, current systems have limited utility for systemic applications. Viral vectors, for example, are rapidly cleared from the circulation, limiting transfection to 'first-pass' organs such as the lungs, liver and spleen. In addition, these systems induce immune responses that compromise transfection resulting from

subsequent injections. In the case of non-viral vectors such as plasmid DNA-cationic lipid complexes (lipoplexes), the large size and positively charged character of these aggregates also results in rapid clearance. The highest expression levels observed with lipoplex systems are again in first-pass organs, particularly the lungs [1,2••,3-6]. In addition, lipoplexes often give rise to significant toxicities both *in vitro* [7] and *in vivo* [8,9••].

Progress towards achieving a gene delivery system for treatment of systemic disease has been slow: In this review we examine current approaches employing non-viral vectors, focusing on those systems with potential for systemic delivery. We report primarily on progress employing polymer and lipid-based systems over the past two years, as other reviews provide summaries of earlier material [10,11].

Properties required of a systemic gene therapy vector

The design features required of drug delivery systems that have systemic utility are becoming better defined. In particular, the carrier system must exhibit a small size and a long circulation time following systemic (ie, intravenous) administration. These demands stem from behavior observed for liposomal systems that have proven clinical utility. Liposomal systems that are small (diameter ≤ 100 nm) and that exhibit long circulation lifetimes (half-life ≥ 5 h in mice) following intravenous injection exhibit a remarkable property termed 'disease-site targeting' or passive targeting, which results in large improvements in the amounts of drug arriving at the disease site. For example, liposomal vincristine formulations that have these characteristics can result in the accumulation of 50- to 100fold higher amounts of drug at a tumor site as compared to injection of the same amount of free drug [12.13,14]. These levels often correspond to 5% or more of the total injected dose per gram of tumor as compared to 0.1% or less for an equivalent dose of the free drug. This can result in large increases in efficacy [12.]. The reasons for these improvements concerns the increased permeability of the vasculature at tumor sites [15] or sites of inflammation which results in preferential extravasation of small, longcirculating carriers in these regions.

The implications for the design of systemic gene therapy vectors are clear. In order to get appreciable amounts of the vector containing the therapeutic gene to the site of disease, the vector must be stable, small and long circulating. Additional challenges are that on arriving at a disease site such as a tumor, target cells must accumulate the vector, which must escape the endocytotic pathway and be delivered to the nucleus. However, these are secondary requirements; if the vector does not even reach the disease site there can be little hope of any therapeutic benefit. As indicated below, a large majority of non-viral gene carrier systems lack the basic properties required to reach sites of systemic diseases.

Current vectors for *in vivo* gene delivery *Polymer-based* delivery vehicles

Masmid DNA can be condensed into small particles (60 to 100 nm) by a variety of cationic polymers, giving rise to polyplexes (plasmid DNA-cationic polymer complexes). Polyplexes formed from polylysine (pLL) and plasmid DNA are cleared from the circulation within 5 [16] to ~ 30 [17•] min of injection, with the majority of DNA delivered to the liver [16]. Rapid clearance of pLL polyplexes has been attributed- to charge-mediated interactions with serum albumin and other proteins [16]. One strategy to improve circulation times has been to coat the pLL/DNA complexes with a multivalent hydrophilic polymer (poly-[N-(2hydroxypropyl)methacrylamide] or pHPMA) that prevents protein interaction, and reduces uptake by macrophages in vitro [17•]. Unfortunately, these systems have limited systemic utility' since 'the circulation lifetimes of the pHPMA-pLL/DNA polyplexes are even shorter than observed for pLL/DNA [17.]. Both systems are taken up by the liver. Attachment of a targeting ligand (transferrin) to pHPMA-pLL/DNA polyplex increases transfection of K562 cells some l&fold, but in vivo studies have not been performed [18].

Polyplexes have been formed from a variety of other polycations, examples of which include polyethylenimines (PEI) [19]; galactosyl-PLSP (a lysine/serine copolymer with PEG,, at the C-terminus, and 2 to 4% of the lysine amino side chains linked to galactose) [20]; TMAEM (poly[2-(trimethylammonio)ethyl methacrylate chloride) [5]; GalpOrn-mHA2 (poly(L-ornithine) modified with galactose and a fusogenic peptide (mHA2)) [21]; and PIA (polyinosinic acid) [22•]. Some, such as PIA/DNA, have diameters of < 100 nm [22•], while others, such as Gal-pOrn-mHA2/DNA [21] and galactosyl-PLSP [20], exhibit diameters up to 200 nm. Most of these polyplexes are cleared rapidly from the circulation, in < 10 min, and preferentially accumulate in the liver. Both 22-kDa PEI/DNA [19] and Gal-pOrnmHA2/DNA [21] polyplexes were able to transfect the lung, with lower levels of gene expression, in spleen, liver, kidney and heart observed for the PEI/DNA polyplexes. Reporter gene expression was observed in the liver 2 days following injection of galactosyl-PLSP/DNA polyplexes [20]. On the basis of these results it appears that most polyplex systems do not exhibit- the pharmacokinetic characteristics required for systemic delivery applications.

One of the more promising polyplex studies examined the effect of PEGylating DNA/transferrin-PEI (TfPEI) these give rise to spolyplexes [23••]. The polyplexes were small (40 nm) and exhibited extended circulation lifetimes compared to non-PEGylated controls. Approximately 33% of the PEG-DNA/TfPEI remained in the circulation after 30 min, while only 6% of the non-PEGylated DNA/TfPEI remained- in the circulation at that time. Both systems were capable of transfecting K562 and neuro-2a cells *in vitro*, but only. The PEGylated polyplexes were able to transfect a distal tumor following intravenous injection, employing a neuro-2a mouse tumor model. These results demonstrate the potential for enabling systemic delivery of polymer-based systems by shielding the surface charge of the particle.

Lipid-based delivery vehicles

Lipoplexes (plasmid DNA-cationic lipid complexes) are formed by mixing plasmids with preformed cationic liposomes. They are commonly employed as non-viral gene delivery systems [24], but they exhibit rapid clearance from the circulation and transfection is largely limited to first-pass organs. Some lipoplexes, such as those made from the cationic lipid DOTAP [19], preferentially accumulate in the lung. Others, containing phosphatidylcholine/phosphatidylethanolamine/cholesterol (PC/PE/Chol) mixtures, exhibit a wider tissue distribution [22.] The results from a study involving the cationic lipid DC-6-14 reveal that the net charge of the lipoplex particle, determined by the lipid:DNA ratio, determines whether accumulation occurs in the lung (excess positive charge) or liver (excess negative charge) [25]. In general, it would appear that lipoplexes have limited potential for systemic delivery. Published reports of lipoplex circulation, times are rare; however, when they are measured, they are usually < 5 min [22•]. In addition to their highly charged nature, which leads to rapid clearance, most lipoplexes are of a size, ie, 150 to 800 nm, which also precludes extended circulation lifetimes [25,26].

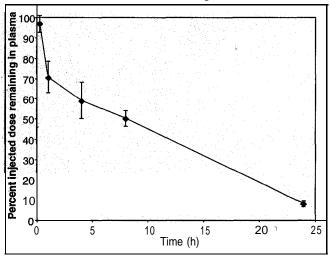
Lipid-polymer delivery vehicles

Lipopolyplexes are formed from polyplexes and preformed liposomes. As with polyplexes and lipoplexes, lipopolyplexes have potential for in vivo gene delivery to specific tissues, but do not possess the pharmacokinetic properties required for systemic delivery. Lipopolyplexes, which exhibit diameters in the range of 50 to 300 nm, are often smaller than lipoplexes [22•,27,28••,29], but it is difficult to assess whether this impacts circulation lifetimes as this parameter is rarely reported. One system composed of (PC/PE/Chol)/PIA/DNA exhibited a circulation half-life of 16 min [22•]. In terms of biodistribution, lipopolyplexes accumulate in lung, heart, spleen, liver and kidneys [22,28,0,29]. Gene expression has been observed in those tissues for a lipopolyplex vector made from DOTAP/protamine/DNA. Interestingly, lipopolyplexes containing the fusogenic 'helper' lipid -DOPE yielded less gene expression than comparable systems containing cholesterol [28.,29]. GFP gene expression in liver was observed 24 h after injection of a lipopolyplex formed from acetylated PEI/DOPE lipdsomes and plasmid DNA [30].

Plasmid DNA encapsulated in liposomes

A variety of techniques have been described for encapsulating DNA within liposomes [31••], but most of these give rise to systems with low DNA-to-lipid ratios and sizes in the range of 100 to >500 nm. The major challenge is to efficiently encapsulate plasmid in small liposomal systems. Efficient encapsulation of small molecules is increasingly straightforward [32], however, encapsulation of macromolecules such as plasmids represents a much more difficult challenge.

Recently, Shangguan *et al* [33] described a method for condensing plasmid with spermine, which was then encapsulated within a novel *N*-acyl phosphatidylethanolamine-containing delivery vehicle (N-C12-DOPE/DOPC liposomes). The resulting particle diameter was approximately 200 nm.


These systems transfected OVCAR-3 cells *in vitro* at levels comparable to lipoplexes. Unfortunately, *in vivo* biodistribution or transfection data were not reported. Bailey and Sullivan [34••] have achieved efficient encapsulation of plasmid DNA in small neutral liposomes, employing a protocol utilizing ethanol and calcium with subsequent removal of ethanol by dialysis. These neutral lipid complexes (NLCs), composed of plasmid DNA encapsulated in vesicles of DOPC, DOPC:DOPE and DOPC:DOPE:Chol, have circulation lifetimes > 1 h. To date, neither *in vitro* nor *in vivo* transfection potencies have been reported.

Targeted transfection in the brain has been achieved using neutral PEGylated immunoliposomes containing plasmid [35••]. The plasmid was encapsulated within vesicles prepared from POPC, DDAB and DSPE-PEG,, by a procedure in which a mixture of plasmid and sonicated vesicles were freeze-thawed and extruded, with subsequent removal of external DNA by nuclease digestion. A monoclonal antibody directed against the transferrin receptor was then attached to the liposome surface. The resulting particles have a diameter of the order of 70 nm, but a circulation lifetime of only 5 min. Nevertheless, the presence of the transferrin mAb increased uptake in the liver and brain, with gene expression observed in the liver, lung, spleen and brain that peaked at 48 h.

Liposomal DNA carriers known as stabilized plasmid-lipid particles (SF'LP) have been developed and characterized in the last two years. SPLP are small (70 nm) and consist of plasmid DNA encapsulated within a lipid bilayer composed of DOPE, a cationic lipid (usually DODAC) and PEG-ceramide (PEG-Cer) [31...]. SPLP are formed by a procedure in which mixtures of plasmid and lipid are co-solubiliied in the detergent octyl-glucopyranoside (OGP), which is then removed by dialysis. When conditions are optimized, high plasmid encapsulation efficiencies can be achieved (50 to 70%). Unencapsulated DNA is removed by DEAE-sepharose chromatography, and empty vesicles are removed by sucrose density gradient centrifugation. The resulting SPLP are small, monodisperse particles of ~ 70 nm diameter that consist of plasmid encapsulated in a unilamellar lipid vesicle [9...]. The plasmid:lipid ratio of the purified SPLP is 62.5 µg/µmol [31••], corresponding to one plasmid per SPLP [9••,31••]. SPLP provide protection of plasmid DNA from DNase I and serum nucleases [31...], and are highly stable in serum.

The pharmacokinetics, tumor accumulation and transfection properties of SPLP composed of DOPE/DODAC/PEG-Cer (83:7:10) [9••,31••], have been extensively characterized in several" mouse tumor models. Following intravenous injection into mice bearing subcutaneous Lewis lung carcinomas, the circulation half-life of SPLP was 6.1 ± 1.1 h and 7.2 ± 1.6 h, as assessed by lipid and DNA markers, respectively [9••]. Lipoplexes examined under identical conditions had circulation half-lives < 15 min [9••]. A representative example of the clearance of SPLP from the circulation of neuro-2a tumor-bearing mice following a single intravenous dose of SPLP is shown in Figure 1 [36]. Note that 10% of the injected dose is still present in the circulation 24 h after injection.

Figure 1. SPLP serum clearance following a single intravenous administration in neuro-2a tumor-bearing A/J mice.

On day 0, 1.5 x 10° cells were injected subcutaneously in the hind flank of each mouse (injection volume, 50 μ I). When tumors were an appropriate size (- day 9), I³H]CHE-SPLP (100 μ g DNA) was administered intravenously in a total volume of 200 μ I. The specific activity of the [³H]CHE was 1 μ Ci/mg lipid. Each time point reflects the average results from four mice [36].

Accumulation of SPLP at distal tumor sites and gene expression at those sites has been observed in mouse tumor models following intravenous injection. Studies employing the subcutaneous Lewis lung carcinoma revealed the presence of SPLP in liver, plasma and tumor at 24 h after injection, with little found in the lung and spleen [9...]. In contrast, lipoplexes were located almost exclusively in the liver. Approximately 3% of the SPLP dose (~ 1000 copies per cell) was found at the tumor at 24 h, as contrasted with < 0.2% of the lipoplex dose. Naked DNA and lipoplexes gave rise to no gene expression at the tumor, whereas SPLP gave significant gene expression peaking at 48 h. Further, SPLP elicited no toxic side effects at dose levels as high as 100 µg DNA per mouse, whereas lipoplexes resulted in raised liver enzyme levels at doses > 20 ug per mouse.

The accumulation of SPLP-associated plasmid DNA at a distal neuro-2a tumor site following intravenous injection is shown in Figure 2 [36]. The amount of intact plasmid delivered to the tumor is substantial, corresponding to > 10% of the total injected dose per gram of tumor at 24 h. This leads to significant levels of gene expression at the tumor at 24 h, which reaches a maximum 72 h after injection (Figure 3) [36]. It is striking that the highest luciferase activity is located in the tumor, with other tissues giving only low levels of transfection. At the later time points, the transfection levels in the tumor are two orders of magnitude greater than in other tissues. These results confirm that long-circulating liposomal vectors are capable of preferential disease-site targeting and gene transfer.

Figure 2. SPLP accumulation in subcutaneous neuro-2a tumors following a single intravenous administration in A/J mice.

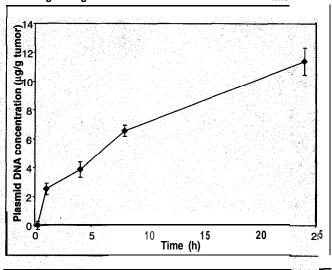
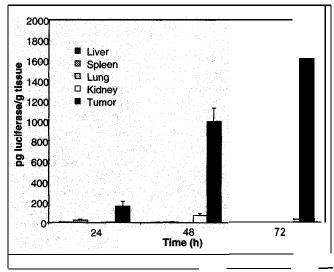



Figure 3. Luciferase gene expression following a single intravenous administration of SPLP in neuro-2a tumor-bearing A/J mice.

The levels of gene expression achieved at a distal tumor site following intravenous injection of SPLP are encouraging. However, some therapeutic proteins may Irequire higher levels of expression to achieve therapeutic benefits. In this regard, the transfection potency of SPLP systems can be altered 1by employing different cationic lipids [37•]. Transfection potencies can also be enhanced by raising the cationic lipid content of the SPLP, which can be achieved by inclusion of citrate [38••] or phosphate [39] buffer in the dialysis medium. Further enhancements can be achieved by using PEG coatings that dissociate from the SPLP over time. The presence of the PEG coating which is required for SP'LP formation, also inhibits interactions with cells, and thus uptake into cells 15 enhanced if the PEG-Cer molecules dissociate over time. The dissociation rates of PEG-Cer molecules from lipid vesicles can be adjusted by changing the length of the N-acyl chair on the ceramide anchor. For example, PEG-CerC, will dissociiate with a half-life of < 1.2 min [40], whereas for PEG-CerC, and PEG-Cer C_n the dissociation half-lives are 1.2 h and > 13 days, respectively [31...]. It was found that SPLP containing 241%

DODAC and PEG-CerC₈ gave optimized levels of transfection in COS-7 and HepG2 cells in *vitro* [38••]. The transfection properties of these systems following intravenous injection have not yet been reported.

Future directions

In summary, most gene delivery vectors do not possess the basic pharmacokinetic properties required for systemic applications. Polyplexes, lipoplexes and lipopolyplexes all have potential for gene delivery to organs such as lung, liver and spleen, but their application to systemic diseases requires modifications, such as PEGylation, to enhance the circulation lifetimes of these particles. The most promising systems are those where plasmid DNA is encapsulated within a lipid bilayer. The best characterized of these is the SPLP, which possesses long circulation lifetimes and which preferentially delivers plasmid to distal tumor sites following intravenous injection, with associated gene expression. Furthermore, this system is flexible, and enhanced levels of gene expression may be achieved by modifying the lipid composition. Alternatively, the use of PEG-Cer molecules with optimized dissociation rates may result in enhanced in *vivo* activity. The PEG-Cer needs to remain with the SPLP long enough to allow accumulation at a site of disease, and then dissociate, leading to particle destabilization and enhanced uptake into cells. Finally, the inclusion of targeting ligands that enhance uptake into target cells may also be expected to enhance gene transfer.

Acknowledgements

This research was supported by the Medical Research Council of Canada and INEX Pharmaceuticals Corp.

References

- • of outstanding interest
- of special interest
- Huang L, Li S: Liposomal gene delivery: A complex package. Nature Biotechnol (1997) 15:620-621.
- Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN: Improved DNA: Liposome complexes for increased systemic delivery and gene expression. Nature Biotechnol (1997) 15:647-652.
- •• Characterization of complexes made from DOTAP:cholesterol liposomes formed by sonication, heating and extrusion with an emphasis on their performance in a systemic context.
- Thierry AR, Lunardi-Iskandar Y, Bryant JL, Rabinovich P, Gallo RC, Mahan LC: Systemic gene therapy: Biodistribution and long-term expression of a trensgene in mice. Proc Natl Acad Sci USA (1995) 92:9742-9746.
- Hofland HE, Nagy D, Liu JJ, Spfatt K, Lee YL, Danos 0, Sullivan SM: In vivo gene transfer by intravenous administration of stable cationic lipid/DNA complex. Pharm Res (1997) 14:742-749.
- Oupicky D, Konak C, Dash PR, Seymour LW, Ulbfich K: Effect of albumin and polyanion on the structure of DNA complexes with polycation containing hydrophilic nonionic block. Bioconjug Chem (1999) 10:764-772.
- Wagner E: Effects of membrane-active agents in gene delivery. J Control Release (1998) 53:155-158.

- Harrison GS, Wang Y, Tomczak J, Hogan C, Shpall EJ, Curiel TJ, Feigner PL: Optimization of gene transfer using cstionic lipids in cell lines and primary human CD4+ and CD34+ hematopoietic cells. Biotechniques (1995) 19:816-823.
- Li S, Huang L: In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene Ther (1997) 4:891-900.
- Tam P, Monck M, Lee D, Ludkovski 0, Leng EC, Clow K, Stark H, Scherrer P, Graham RW, Cullis PR: Stabilized plasmidlipid particles for systemic gene therapy. Gene Ther (2000) 7:1867-1874.
- * Characterization of SPLP structure and demonstration of systemic delivery potential of SPLP. Following iv injection in tumorbearing mice, SPLP exhibit extended circulation lifetimes and accumulate at distal tumors with gene expression.
- MacLachlan I, Cuiiis PR, Graham RW: Synthetic virus systems for systemic gene therapy. In: Gene Therapy: Therapeutic Mechanism&and Strategies. Smyth-Templeton N, Lasic DD (Eds); Marcel Dekker, New York, NY, USA (2000):267-290.
- MacLachlan I, Cullis P, Graham RW: Progress towards a synthetic virus for systemic gene therapy. Curr Opin Mol Ther (1999) 1:252-259.
- Boman NL, Masin D, Mayer LD, Cullis PR, Bally MB: Liposomai vincristine which exhibits increased drug retention and hicreased circulation longevity cures mice bearing P368 tumors. Cancer Res (1994) 54:2830-2833.
- * This paper demonstrates that increased circulation lifetime and drug retention can lead to greatly enhanced efficacy of liposomal vincristine.
- Mayer LD, Nayar R, Thies RL, Boman NL, Culiis PR, Bally MB: identification of vesicle properties that enhance the antitumor activity of liposomal vincristine against murine L1210 leukemia. Cancer Chemother Pharmacol (1993) 33: 17-24.
- 14. Webb MS, Harasym TO, Masin D, Bally MB, Mayer LO: Sphingomyelin-cholesterol iiposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br J Cancer (1995) 72:896-904.
- Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM: identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol (1988) 133:95-109.
- Dash PR, Read ML, Barrett LB, Wolfert MA, Seymour LW: Factors affecting-blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther (1999) 6:643-650.
- Oupicky D, Howard KA, Konak C, Dash PR, Uibrich K, Seymour LW: Steric stabilization of poly-L-Lysine/DNA complexes by the covalent attachment of semiteiecheiic poly[N-(2-hydroxypropyl)methacrylamide]. Bioconjug Chem (2000) 11:492-501.
- Polylysine/DNA polyplexes were present in the circulation 30 min post-injection.
- 18. Dash PR, Read ML, Fisher KD, Howard KA, Wolfert M, Oupicky D, Subr V, Strohalm J, Ulbrich K, Seymour LW: Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with a multivalent hydrophilic polymer arid retargeting through attachment of transferrin. J Biol Chem (2000) 275:3793-3802.

- Bragonzi A, Boietta A, Biffi A, Muggia A, Sersale G, Cheng SH, Bordignon C, Assael BM, Conese M: Comparison between cationic polymers and lipids in mediating systemic gene delivery to the lungs. Gene Ther (1999) 6: 19952004.
- 20. Hisayasu S, Miyauchi M, Akiyama K, Gotoh T, Satoh S, Shimada T: *In vivo* targeted gene transfer into liver ceils mediated by a novel gaiactosyi-D-iysine/D-serine copolymer. *Gene Ther* (1999) 6:689-693.
- Nishikawa M, Yamauchi M, Morimoto K, Ishida E, Takakura Y, Hashida M: Hepatocyte-targeted in vivo gene expression by intravenous injection of piasmid DNA complexed with synthetic multi-functional gene delivery system. Gene Ther (2000) 7:548-555.
- 22. Minchin RF, Carpenter D, Orr RJ: Poiyinosinic acid and poiycationic iiposomes attenuate the hepatic clearance of circulating piasmid DNA. J Pharmacol Exp Ther (2001) 296:1006-1012.
- Lipopolyplexes formed from (PC/PE/Chol)/PIA/DNA exhibited a circulation half-life of 16 min.
- Ogris M, Brunner S, Schulier S, Kircheis R, Wagner E: PEGylated DNA/transferrin-PEI complexes: Reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther (1999) 6:595-605.
- •• Promising report of a polyplex system with systemic potential. Following iv injection, PEGylated DNA/transferrin-PEI complexes exhibited an extended circulation lifetime, and transfection was observed in a neuro-2a tumor model.
- 24. Felgner PL, Gadek TR, Holm M, Roman R, Ghan HW, Wenz M, Northrop JP, Ringold GM, Danieisen M: Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA (1987) 84:7413-7417.
- 25. Ishiwata H, Suzuki N, Ando S, Kikuchi H, Kitagawa T: Characteristics and biodistribution of cationic iiposomes and their DNA complexes. *J Control Release* (2000) **69**:139-148.
- 26. Kawakami S, Sato A, Nishikawa M, Yamashita F, Hashida M:
 Mannose receptor-mediated gene transfer into maorophages using novel mannosyiated cationic iiposomes. Gene Ther (2000) 7:292-299.
- Chen QR, Zhang L, Stass SA, Mixson AJ: Co-polymer of histidine and iysine markedly enhances transfection efficiency of iiposomes. Gene Ther (2000) 7:1698-I 705.
- 28. Li S, Tseng WC, Stolz DB, Wu SP, Watkins SC, Huang L: Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous iipofection. Gene Ther (1999) 6:585-594.
- * Demonstration that the presence of cholesterol in **lipopolyplexes** can enhance **transfection** potency to a greater extent than can DOPE.
- Li S, Rizzo MA, Bhattacharya S, Huang L: Characterization of cationic iipidprotamine-DNA (LPD) complexes for intravenous gene delivery. Gene Ther (1998) 5:930-937.
- Yamazaki Y, Nango M, Matsuura M, Hasegawa Y, Hasegawa M, Oku N: Poiycation iiposomes, a novel non-viral gene transfer system, constructed from cetyiated poiyethyienimine. Gene Ther (2000) 7:1148-I 155.
- 31. -Wheeler JJ, Palmer L, Ossanlou M, MacLachlan I, Graham RW, Zhang YP, Hope MJ, Scherrer P, Culiis PR: Stabilized piasmid-lipid particles: Construction and characterization. Gene *Ther* (1999) 6:271-281.
- 0 Describes formation and characterization of SPLP.

- 32. Cullis PR, Hope MJ, Bally MB, Madden TD, Mayer LD, Fenske DB: Influence of pH gradients on the transbilayer transport of drugs, lipids, peptides and metal ions into large unilamellar vesicles. Biochim Biophys Acta (1997) 1331:187-211.
- Shangguan T, Cabral-Lilly D, Purandare U, Godin N, Ahl P, Janoff A, Meers P: A novel N-acyl phosphatidylethanolamine-containing delivery vehicle for spermine-condensed plasmid DNA. Gene Ther (2000) 7:769-783.
- 34. Bailey AL, Sullivan SM: Efficient encapsulation of DNA plasmids in small neutral liposomes induced by 'ethanol and calcium. Biochim Biophys' Acta (2000) 1468:239-252.
- a Describes a 'neutral liposomal system for the encapsulation of plasmid DNA with extended circulation lifetimes.
- 35. Shi N. Pardridge WM: Non-invasive gene 'targeting to the brain. Proc Natl Acad Sci USA (2000) 97:7567-7572.
- a 'This paper describes the delivery of genes to the brain 'by means of a. **liposomal encapsulated** system possessing **monoclonal** antibodies targeted to the **transferrin** receptor.
- Fenske DB, MacLachlan I, Cullis PR: Stabilized plasmid-lipid particles: A systemic gene therapy vector. Methods Enzymol (2001) in press.

- Mok KW, Lam AM, Cullis PR: Stabilized plasmid-lipid particles: Factors influencing plasmid entrapment and transfection properties. Biochim Biophys Acta (1999) 1419:137-1 50.
- Plasmid entrapment and transfection potency of SPLP is related to the type of cationic lipid and PEG-Cer used to form the particles.
- Zhang YP, Sekirov L, Saravolac EG, Wheeler JJ, Tardi P, Clow K, Leng E, Sun R, Cullis PR, Scherrer P: Stabilized plasmidlipid particles for regional gene therapy: Formulation and trensfection properties. Gene Ther (1999) 6:1438-1 447.
- This Paper reports that increasing the cationic lipid content, or altering the dissociation characteristics of the PEG-Cer molecules, can lead to increased transfection potency of SPLP.
- 39. Saravolac EG, Ludkovski 0, Skirrow R, Ossanlou M, Zhang YP, Giesbrecht C, Thompson J, Thomas S, Stark H, Cullis PR, Scherrer P: Encapsulation of plasmid DNA in stabilized plasmid-lipid particles composed of different cationic lipid concentration for optimal Wansfection activity. J Drug Targeting (2000) 7:423-437.
- Holland JW, Hui C, Cullis PR, Madden TD: Poly(ethylene glycol)

 lipid conjugates regulate the calcium-Induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine. Biochemistry (1996) 35:2618-2624.